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The problem of devising systematic policies for replacement of equipment sub-
ject to wear-out involves the detection of increases in failure rates. Detection
procedures are defined as stopping times N with respect to the observed sequence
of random failures. The concepts of “quickness of detection” and “frequency. of
false reactions” are made precise and a class of procedures is studied which opti-
mizes the former asymptotically as the latter is reduced to zero. Results of Monte
Carlo experiments are given which show that efficient quickness of detection is
attainable simultaneously for various levels of increase in failure rates.

1. Introduction

The present formulation of the problem of detecting
failure rate increases arose in the study of replacement
policies for equipment which may possibly be subject to
wear-out, under the assumption that little is known a
priori about when the onset of wear-out is likely to occur,
or even whether it will occur. The desired type of policy
is a rule utilizing failure data themselves to determine
that the failure rate has increased. When such determina-
tion has occurred, some previously specified action is
taken, e.g., investigation of causes or ordering of replace-
ments. It is desired that this action be taken as soon as
possible after a specified level of increase in the failure
rate has occurred, and it is by no means necessary to
estimate when that increase began. Thus, in mathematical
terms, the kind of statistical procedure sought is a stop-
ping time N for an observed sequence of random variables
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Xy, X5, X5, - -+ . That is, N is a random variable with
possible values 1, 2, - - - , and o (i.e., never stops), such
that for everyn = 1,2, - - - , the event {N = n} depends

on X,, - - - ,X, only. The X/’s are times between succes-
sive failures, and are assumed to be independent, with
exponential densities
)\i@_)“z, x=0
A >0,i=14,2 - -
0, x<0 (1

In order to define a simple criterion for quickness of
reaction to increases in the failure rate, it is convenient
to consider the following situation: For some
m=12 -,

‘/\1:/\2: o =M_1=A.(known)
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and
A= Apsr= - =1+6)1,0>0 (2)

Note that Eq. (2) specifies that the increase in failure
rate from A to (1 + 6) A occurs instantaneously after X,, ,
is observed. Denote by P,, and E,, probabilities and ex-
pectations for m =1, 2, - - - , and denote the same by
P, and E, when A = A, = X, = - - - . A reasonable mea-
sure of quickness of detection of increases occurring at
time m is the smallest number C,, such that
E,[N— (m— 1)‘|X1 =%, ", X1 = %p-1] =Chp

forallx,, - -+, %, such that N=m. As a kind of “worst
case” criterion, define E,N as the largest of the C,’s, i.e.,

EN= sup C, (3)

m=1

The desire to have small E,N for § > 0 must, of course,
be balanced against the need to have a controlled fre-
quency of “false reactions.” In other words, when there
is no increase in failure rate, then N should be large, hope-
fully infinite. It is shown in Ref. 1, however, that in order
to have E,N finite for some > 0 it is necessary that N
have finite expectation even under P,. An appropriate
type of restriction on false reactions, therefore, is

EN=y>1 4)
where vy is to be prescribed.

The problem under investigation can now be formu-
lated more precisely. Among all stopping times N satis-
tying Eq. (4) for prescribed y, determine one which mini-
mizes (or nearly minimizes) E,N over a specified range,
6:=0=40,. In Ref. 1, it is shown that as y > co the mini-
mum possible E,N (6§ > 0 fixed) is asymptotic to

log Y (5)

0
log (1 +6) — 1594

where the denominator is the Kullback-Leibler informa-
tion number when (1 + ) A is true and the alternative is
A. In that paper, it is also demonstrated that a “maximum
likelihood” procedure, N, achieves the asymptotic mini-
mum simultaneously for all § > 0. (The rate of approach
to the asymptotic minimum depends on 6, however.)
These procedures are defined for the present case of
exponential distributions in Section IIT and computation-
ally simpler modifications are introduced, along with
Monte Carlo results. It is helpful to take up first the case
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of a single alternative 6 > 0, which will be done in Sec-
tion II. Section IV treats the case where X is unknown.

Il. Simple Alternative

Motivated by the problem of control charts in quality
control, E. S. Page (Ref. 2) proposed a general procedure
for detecting a change from one density to another at an
unknown location in a sequence of random variables. His
procedure consists of repeated applications of a sequen-
tial probability ratio test (SPRT) which in the present
context is definable by the inequalities (for fixed 8 > 0)

O<nlog(1+6)—6S,<logy (6)

where S, = X; + - -+ + X,, y is chosen > 1, and it is
assumed from this point on that A = 1 (which can always
be achieved by scaling the X’s). The procedure is to stop
as soon as the right-hand inequality is violated, with the
proviso that if the left-hand inequality is violated first all
observations up to that point will be discarded and the
procedure “recycled,” with S,, S, - - - , denoting cumu-
lative sums of the new observations.

The following equivalent formulation is convenient to
apply: stop the first time that

T,.élog Y (7)
where Ty =0 and forn=1,2 - - -,
T, =max(0, T,-, +log (1 + 6) — 6X,) (8)

It is illuminating also to view Page’s procedure in an-
other way. Stopping occurs when for some k=1 the last
k observations, X, .., - - - ,X,, are “significant” in the
sense of a one-sided SPRT, i.e.,

klog(1+6) — 0 (Xpopes + - - + Xo) = log y

Let «, 1 — B, respectively, denote the probabilities under
P, P, that the procedure stops before recycling. Then the
expected number of cycles is evidently o, (1), re-
spectively. If N, denotes the number of observations
required to violate either inequality, then by Wald’s equa-
tion (Ref. 3) for the expected value of the sum of a random
number of independent and identically distributed vari-
ables, the number N of observations taken by Page’s pro-
cedure satisfies

EN = o E,N, ©)
and

E.N = (1 — B)* E.N, (10)
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Furthermore,
E.N = (1 — B)* E,N, (11)

since obviously E,N > E,N. And E,N < E,N by the fol-
lowing argument. Observing X; =2y, * * * , Xpoy = Xmes
determines that T',_, =#=0 (depending on x;, * - * , Xp,).
Since Xy, Xmi1, © -+, are independent of past X’s, the
sequence Ty, Ty, © * -, behaves just as Ty, Ty, - - -,
would if one started with T, = t=0. Since this last ob-
viously would not make any succeeding T’s smaller, it
would not increase the time required to reach log y. This
proves Eq. (11).

Since a=y by the usual estimates of SPRT error
probabilities (Ref. 4), evidently

E.N=,EN,>,

Furthermore (1 — 8)-* E,N, is asymptotic to log y divided
by the information number, by virtue of the usual Wald
formulas for expected sample sizes. Thus Page’s pro-
cedure does approach asymptotically the minimum E,N
(Expression 5).

Using Egs. (9) and (11) one can obtain good approxi-
mations to E,N and E.N in terms of y from the approxi-
mations of SPRT error probabilities and expected sample
sizes for exponential densities given in Ref. 3. For the
boundaries 0 and log y in Expression (6), these approxi-
mations are as follows:

1=f=aGE)= ¢ (ef?lc -l(~0;) =) (12)
where
_ (1+0)log(l+6)—a
GO = g TTog @+ 0)
(log (1 + 0) — 8) EN; = elog (y (L + 6)) — (1 — a) 6
(13)

<log(1 +6) — 110>EBN1 1-8)

< =L+ ) (log (1 + e))z) o
logy + A log(1 50 -6/ T4

(14)
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The approximations (12)-(14) give approximations to

E,N and E,N by Egs. (9) and (11). The accuracy of these
approximations is indicated by the following comparison
(Table 1) with the values based on the exact formulas in
Ref. 5 (which entail considerably more calculation).

lll. Composite Alternative

For the problem of minimizing E,N over a range
=0 =40, subject to E,N=>+y, it is natural to consider
51multaneous Page procedures. Performing Page’s proce-
dures simultaneously for all alternatives fe [6,, §,] results
in stopping when for some k=1 the last k observations
satisfy

max [klog (1 + 6) — 6 (Xppu

91=9=9,

+ -+ X)]=logy

This rule is computable since the indicated maximum is
attained either at 01, or §,, or at the maximum likelihood
estimate, given by / § = (Xppe + X,) k* — 1. This
is the procedure, N, which achieves the asymptotic mini-
mum (Expression 5) for every 6 € (4, §,), as shown in
Ref. 1. In that paper the computation of this type of pro-
cedure is discussed.

The results of preliminary Monte Carlo experiments
indicated that in the “small sample case,” i.e., E,N == 2000,
when 6./, is not very large, the improvement of E,N for
9 €[0,,0.] achieved by N in comparison to Page’s proce-
dure is already achieved to a large extent by the simpler
rule which uses two simultaneous Page procedures, one
for each of the alternatives 6,, 6,. Accordingly, the follow-
ing results are limited to this dual-Page procedure, N.
Extensive Monte Carlo sampling was carried out with
0. =05 and §.=0.8. Thus, the range of alternatives
where efficient performance was most emphasized repre-
sented 50% to 80% increases in failure rate. The values
y = 60 and y = 100 were chosen, resulting in estimates of
E.N equal to 508 and 936, respectively. The results are
summarized in Table 2. (The tolerances given are sample

variances.) Just as for a single Page procedure, E,N =
E,N forg > 0.

The value § = —0.1 is included in Table 2 to indicate
how N performs if the true failure rate remains 10% less
than the nominal value. In both cases y = 60, 100, the
frequency of false reactions is about one-third as large as
when the failure rate equals the nominal value.
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Note that the efficiency of N is about 96% and 98%,
respectively, for y = 60, 100, and ¢ between 0.5 and 0.8
(the efficiency estimate of 100.1% resulting from sampling
error). For 6 outside the chosen interval [0.5, 0.8], the
efficiency falls off gradually but is still quite high between
0.4 and 1.0, particularly for the smaller y.

Comparison of the results for y = 60 and 100 indicates
that a much larger E,N is obtainable for a relatively small
increase in E,N’s. An increase of about 15% in E,,N s be-
tween the two cases yields nearly a doubling of E, N.

For fixed v, there is a convenient rule of thumb that
fairly well approximates E,N over the indicated range;
namely, E,N is inversely proportional to 6 (or, equiva-
lently, the percent increase in the failure rate). Table 3
indicates the accuracy of the approximation 6E,N =
constant in the case of the Monte Carlo results of Table 2.
The rule of thumb exhibits a similar degree of accuracy
in approximating the E,N (from Eqgs. 10 and 14) of a Page
procedure for § with y chosen (depending on 6) to achieve
a prescribed E,N (from Egs. 9 and 13).

Having chosen 6,, 8, for a dual-Page procedure, the
problem naturally arises of how to select y to achieve a
prescribed E,N. (The corresponding problem for a single-
Page procedure is solvable by successive approximations
using Eqgs. 9 and 13.) Unfortunately, it seems to be very
difficult to derive approximations for E,N in terms of v.
Bounds are obtainable, however, from the following
simple considerations. In the case y = 60, for example, the
Page procedures for §, = 0.5 and 6, = 0.8 have frequen-
cies of false reaction, 1/E,N, equal to 1/588 and 1,/1026,
respectively, according to Egs. (9) and (13). Evidently, the
dual procedure N has frequency of false reaction at least
1/588 and at most 1/1026 + 1,/588 = 1/374. Thus, 374 <

E,N < 588. Note that the Monte Carlo result of 508 is in
fact closer to the upper bound, which is also true in the
case y = 100.

It is not very difficult to estimate E,N by Monte Carlo
methods accurately enough to choose v, once the range
has been narrowed by using the bounds just described.
Since the values of E,N increase rather slowly compared
to E,N as y is made larger, there is little harm in choosing
y conservatively.

The single- and dual-Page procedures, N and N, and
the maximum likelihood procedure N all have a pleasant
property: when ¢ = 0, the time to stop is approximately
exponentially distributed. To see this for N, note that the
cycles defined by Expression (6) are a sequence of Ber-
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noulli trials, and stopping occurs upon the first failure to
recycle (i.e., violation of the right-hand inequality). Thus,
the number of cycles is geometrically distributed, and
when y (and hence the number of cycles) is large, the
number of observations also is nearly geometrical (ap-
proximately exponential) in distribution. The same holds
true for N and N, since recycling of the Page procedure
for 4, entails (Ref. 1) recycling of the Page procedures for
all 6 > 4,, i.e., the initial conditions are duplicated. The
approximate exponential distribution gives a reasonable
indication of the probabilities of “unlucky” early false
reactions.

IV. The Case of Unknown A\

By dealing with the sequence of ratios S./S,, S./S., -,
one can obviously develop procedures whose performance
does not depend on the scale factor, A. The sequence {S,.}
is a Poisson process (so long as the failure rate remains
constant) and it is well known (Ref. 6) that the condi-
tional distribution of S, given S,,, = ¢ is the same as the
distribution of the largest of n independent variables uni-
formly distributed on [0, t]. Thus,

x n

ol 0= t
P(S"éxlsmzt):{<t) ’ £<

1

, x=t
and hence
Sn n _
P( ’S— éulsrzﬂ:t) Sn—u t|Sn+1:t
u, 0=u=1
= {1 u=1 (15)

Since this last expression doesn’t depend on £, evidently
(S4/Sw.1)" is uniformly distributed on (0,1) and inde-
pendent of S,,. In fact, (S,/5...)" is independent of
Suas © * + Sy (jointly) for any m > n + 1, since the condi-
tional distributions above are unchanged if the condition
S, = tis augmented by specifying S,.2 = tu0, * ", S =
tm. Therefore, (S,/S,.)" is evidently independent of
(Sni/Sne2)™, =, (Sm-1/Sw)™ " jointly. For fixed m, the
last statement is true for all n < m — 1, and hence

Sl/sz, (52/83)2, 5 (S1n—1/sm>m_1

are mutually independent (for every m==3). Thus, the
random variables in the infinite sequence

S1/8:,(8:/85)% (85/84)%,
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are independent and (by the remark following Eq. 15)
each is uniformly distributed on (0, 1). It is easy to verify

that if U is uniformly distributed on (0, 1), then log U is

exponentially distributed with mean 1. Thus,

S

S. S s
log 5 - 2log 35 »3logg—, - (16)
1 2 3

are independent and exponentially distributed with mean
one, regardless of the true value of . The (single or dual)
‘Page procedures of the preceding sections, when applied
to the sequence (16), will therefore yield the same E,N as
before.

Under what circumstances will the sequence (16) be
independent and exponentially distributed with mean
1/(1 + 6)? Obviously, it suffices that S,,S,, - - - have the
same distribution as Wi/ Wisve . . . where {W,} is
a Poisson process. This is the case if, for example, the S,’s
are the times of successive failures occurring in a family
of repairable parts under the following assumptions. Their
failure rate functions depend only on age (the effects of
previous failures disappearing upon repair) and are Wei-
bull with shape parameter « = 1/(1 + 6) and arbitrary
scale parameters (not necessarily the same for all parts).

The behavior of sequence (16) when the failure rate
changes abruptly at time m can be described approxi-
mately by noting that

Sus
Sn

1 Xﬂr+ " Xn+
= log(l + nX,j) =~ X—"l for largen (17)

nlog
where X, = S./n. If the failure rate is A for X,, -+, X,
then changing it to (1 + 8)x thereafter multiplies
X, Xz, © - by 1/(1 4 6), while X, is largely un-
affected so long as n — m << m. For n > > m, however,
the contribution of X, - - - , X,, to X, becomes small and
nlog (S..1/S.) begins to approach an exponential distribu-
tion with mean one again. If the failure rate changes after
X, from a constant to a Weilbull failure rate function with
a =1/(1 + 6) (keeping the same scale parameter), then it
is easy to see that for n > > m the variables nlog (S,.,/S.]
will be approximately independent exponential with mean
/(1 + 9).

In summary, then, the application of the procedures
studied in the preceding sections to the sequence (16)
leaves E,N unchanged and should result in efficient detec-
tion whenever the failure rate increases sharply and con-
tinues to increase in the form of a Weibull failure rate
function.
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Table 1. Comparison of actual and approximate
expected stopping times

EoN E:N
o Y
Actual Approximate Actual Approximate
0.4 20 4221 418.5 47.9 47.8
0.6 50 676.0° 673.6 36.4 36.4
0.9 40 342.0 340.3 20.2 20.2
Table 2. Number of observations before detection (Monte Carlo sampling)
Valve of ¢

—0.1 [} 0.25 0.4 0.5 0.6 0.8 1.0 1.5
EN (60) 1701 508 96.3 53.9 42.2 35.0 26.2 21.3 15.8

+181 +21 +25 +1.2 +1.0 +0.7 +0.4 +0.3 +0.2
% Efficiency® 85.5 947 96.1 96.2 96.3 95.6 89.1
Eoﬁ(lOO) 2756 936 128.0 69.0 48.3 40.5 30.2 24.5 17.6

+236 +48 +3.5 *+1.6 +1.0 +0.7 +0.5 +0.3 +0.2
% Efficiency® 81.5 89.8 100.1 98.1 97.2 95.6 921.1
“The efficiency was estimated using the ratio of (sampled) Eyﬁ to the EsN of a Page procedure for § having the same E,N as EN (sampled).

Table 3. Values of 9E,N (sampled)

Value of ¢
Y
0.25 0.4 0.5 0.6 0.8 1.0 1.5
60 24.1 21.6 21.1 21.0 21.0 21.3 237
100 32.0 27.6 24.2 24.3 24.2 24.5 26.4
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